Литиево-воздушные батареи снова получили шанс на практическое будущее

0
333 views

 

В процессе работы новой литиево-воздушной батареи ионы лития проходят через электролит на основе йодида лития и реагируют с кислородом на катоде из графена
(иллюстрация Tao Liu, Gabriella Bocchetti, Clare P. Grey/перевод «Вести.Наука»).

Впервые концепция литиево-воздушных или литиево-кислородных батарей (Lithium-air battery) была предложена ещё в 70-х годах прошлого столетия в качестве источника питания для электромобилей. В 2000-х годах к ней снова возник интерес в связи с необходимостью разработки новых возобновляемых источников энергии.

Привлекательность идеи литиево-кислородных батарей в том, что в теории они могут обладать чрезвычайно высокой плотностью энергии. Эта величина характеризует количество энергии, которое может хранить батарея на единицу своего веса.

Конструкция литиево-воздушных батарей и состав электрохимических элементов могут быть различными. Но принцип их работы основан на том, что литиевый анод взаимодействует с кислородом воздуха. Металл окисляется с образованием ионов и электронов. Электроны отправляются во внешнюю цепь, превращаясь в генерируемое электричество, а ионы лития мигрируют через электролит к катоду из пористого углеродного материала.

Ввиду того, что окислитель находится в окружающем воздухе, а не внутри батареи, а металлический литий имеет низкую плотность, такая система теоретически может сохранить и затем выдать столько же энергии на килограмм своего веса, что и бензиновый двигатель. Теория даёт надежду, что когда-нибудь благодаря литиево-воздушным батареям электромобили смогут проезжать по 800 километров без подзарядки.

К сожалению, на практике такой плотности энергии чрезвычайно сложно достичь и многие специалисты отказались от дальнейших попыток. Главной проблемой аккумуляторов этого типа оказалась их недолговечность. Дело в том, что в ходе химических превращений образуются побочные продукты, которые засоряют электроды и могут привести даже к короткому замыканию. Максимальная продолжительность функционирования для таких батарей, составляла всего несколько десятков циклов заряд-разряд.

Но учёные не оставляли попытки побороть недостатки концепции и недавно команда исследователей из Кембриджского университета, работающая под руководством профессора Клер Грей (Clare Grey), разработала очередной прототип литиево-воздушной батареи с рядом нововведений.

Во-первых, в качестве электролита учёные использовали органический растворитель диметоксиэтан с добавлением йодида лития. Благодаря этому во время реакции ионов лития с кислородом на катоде образуется гидроксид лития, который легко разлагается при подзарядке батареи. (В более ранних прототипах на этом этапе происходило образование пероксида лития, который не разлагался и засорял катод.)

Ещё одной проблемой более ранних версий аккумулятора была высокая реакционная способность лития, который взаимодействовал с электролитом и разрушал его. В результате продукты этих реакций выводили из строя анод. Состав нового электролита позволяет избежать и этой загвоздки.

Нововведением стал и материал катода. Учёные использовали для его создания высокопористый графен, который также значительно увеличил ёмкость батареи, но только для определённой скорости заряда и разряда.

В пресс-релизе Кембриджа профессор Грей отмечает, что аккумулятор её команды способен отрабатывать более 2000 циклов заряд-разряд при незначительном снижении производительности и энергоэффективности около 93%. По мнению исследователей, их ячейка уже может хранить в 5 раз больше энергии, чем аналогичная в существующих аккумуляторах, например, для электромобилей Тесла.

Учёным удалось далеко продвинуться и отчасти вернуть надежду на эффективное использование литиево-воздушных батарей за пределами научно-исследовательских лабораторий. Но сделать предстоит ещё очень многое. В частности одна из ближайших для решения проблем – это образование на аноде литиевых веретенообразных волокон, которые могут привести к взрыву аккумулятора.

Кроме этого, новый прототип, как и его предшественники способен работать пока только в атмосфере чистого кислорода, поскольку такие компоненты воздуха, как углекислый газ, азот влага оказывают негативное влияние на металлический электрод.

«Предстоит провести ещё много фундаментальных исследований, для того чтобы доделать некоторые конструкционные моменты, — подводит промежуточные итоги Грей. — Текущие результаты захватывающие, и мы показали, что существуют решения для задач, которые кому-то могли показаться безнадёжными».

Более подробно с разработками учёных из Кембриджского университета и их прототипом литиево-воздушной батареи можно ознакомиться, прочитав статью, которая была опубликована в журнале Science.

?сточник

НЕТ КОММЕНТАРИЕВ

Добавить отзыв

Обязательные поля помечены *

Имя:*

E-mail:*
Ваш e-mail не будет опубликован.

Сообщения:*